Stats 2MB3, Tutorial 9

Mar 20h, 2015

Prediction Interval

- A prediction interval (PI) for a single observation to be selected from a normal distribution is

$$
\bar{x} \pm t_{\alpha / 2, n-1} \cdot s \sqrt{1+\frac{1}{n}}
$$

- The prediction level is $100(1-\alpha) \%$. A lower prediction bound results from replacing $t_{\alpha / 2}$ by t_{α} and discarding the + part and a similar modification gives an upper prediction bound.

Confidence Interval for Variance

- A 100(1- α) $\%$ confidence interval for the variance σ^{2} of a normal population is given by

$$
\left(\frac{(\mathrm{n}-1) \mathrm{s}^{2}}{\chi_{\alpha / 2, n-1}^{2}}, \frac{(\mathrm{n}-1) \mathrm{s}^{2}}{\chi_{1-\alpha / 2, n-1}^{2}}\right)
$$

- The Cl for σ has lower and upper limits that are square roots of the limits above. An upper or lower confidence bound results from replacing $\alpha / 2$ with α in the corresponding limit of the Cl .

Exercise 29, page 292

- Determine the t critical values that will capture the desired t-curve area in each of the following cases:
- 1. Central area=0.95, df=10;
- 2. Central area=0.95, df=20;
- 3. Central area=0.99, df=20;
- 4. Central area=0.99, df=50;
- 5. Upper-tail area=0.01, df=25;
- 6. Lower-tail area=0.025, df=5
- By R:
- 1. qt(1-(1-0.95)/2, 10) $=2.228139$
- 2. $q t(1-(1-0.95) / 2,20)=2.085963$
- 3. qt $(1-(1-0.99) / 2,20)=2.84534$
- 4. qt(1-(1-0.99)/2, 50) $=2.677793$
- 5. qt(1-0.01, 25) $=2.485107$
- 6. $q t(0.025,5)=-2.570582$

Exercise 37, page 293

- A study of ability of individuals to walk in a straight line reported the accompanying data on cadence (strides per second) for a sample of $n=20$ randomly selected healthy men.
- 0.95,0.85,0.92,0.93,0.86,1.00,0.92,0.85,0.81,0.78 ,0.93,0.93,1.05,0.93,1.06,1.06,0.96,0.81,0.96
- A normal probability plot gives substantial support to the assumption that the population distribution of cadence is approximately normal. A descriptive summary of the data from follow:

Exercise 37, page 293

- Sample size: 20
- Mean: 0.9255
- Median: 0.9300
- Trimmed Mean: 0.9261
- Standard Deviation: 0.0809
- Standard Error of Mean: 0.0181
- Minimum: 0.7800
- Maximum: 1.0600
- Lower Quantile: 0.8525
- Upper Quantile: 0.9600
- a) Calculate and interpret a 95% confidence interval for population mean cadence;
- b) Calculate and interpret a 95% prediction interval for the cadence of a single individual randomly selected from this population;
- a)
- $t_{0.025}(20-1)=2.093024$
- The 95\% confidence interval (0.9255$2.093 * 0.0181,0.9255+2.093 * 0.0181)=(0.8876$, $0.9634)$.
- b)
- The 95% prediction interval
$0.9255 \pm 2.093(0.0809) \sqrt{1+\frac{1}{20}}=(17.25,32.75)$

Exercise 45, page 296

- The following observations were made on fracture toughness of a base plate of 18% nickel maraging steel:
- 69.5,71.9,72.6,73.1,73.3,73.5,75.5,75.7,75.8,76.1 ,76.2,76.2,77.0,77.9,78.1,79.6,79.7,79.9,80.1,82. 2,83.7,93.7
- Calculate a $99 \% \mathrm{Cl}$ for the standard deviation of the fracture-toughness distribution. Is this interval valid whatever the nature of the distribution? Explain.
- Degree of freedom: $\mathrm{n}-1=22-1=21$
- qchisq(0.005,21)=8.033653
- qchisq(0.995,21)=41.40106
- The variance $s^{2}=25.36799$
- Then the Cl for σ^{2} is
(21*25.368/41.401,21*25.368/8.034)
$=(12.868,66.309)$
Cl for σ is $(3.6,8.1)$
This interval is valid when the distribution is approximately normal. In other words, the observations must pass the normality test.

